312 research outputs found

    Colossal Spin Hall Effect in Ultrathin Metallic Films

    Get PDF
    We predict spin Hall angles up to 80% for ultrathin noble metal films with substitutional Bi impurities. The colossal spin Hall effect is caused by enhancement of the spin Hall conductivity in reduced sample dimension and a strong reduction of the charge conductivity by resonant impurity scattering. These findings can be exploited to create materials with high efficiency of charge to spin current conversion by strain engineering.Comment: 4 pages, 5 figure

    Discrete nonholonomic LL systems on Lie groups

    Get PDF
    This paper applies the recently developed theory of discrete nonholonomic mechanics to the study of discrete nonholonomic left-invariant dynamics on Lie groups. The theory is illustrated with the discrete versions of two classical nonholonomic systems, the Suslov top and the Chaplygin sleigh. The preservation of the reduced energy by the discrete flow is observed and the discrete momentum conservation is discussed

    Evaluation of conduction eigenchannels of an adatom probed by an STM tip

    Full text link
    Ballistic conductance through a single atom adsorbed on a metallic surface and probed by a scanning tunneling microscope (STM) tip can be decomposed into eigenchannel contributions, which can be potentially obtained from shot noise measurements. Our density functional theory calculations provide evidence that transmission probabilities of these eigenchannels encode information on the modifications of the adatom's local density of states caused by its interaction with the STM tip. In the case of open shell atoms, this can be revealed in nonmonotonic behavior of the eigenchannel's transmissions as a function of the tip-adatom separation.Comment: 4.5 pages, 5 figures, REVTe

    Comparison of CuBr-laser frequency operation modes

    Get PDF
    The results of a comparative study of CuBr-laser energy characteristics with a small active volume operating in pulse-periodic mode and dual pump pulses are presented. The advantages of these regimes in the range 5-100 Hz and 5-100 kHz for output power, the energy generation and efficiency of the laser are shown

    Seebeck Effect in Nanoscale Ferromagnets

    Get PDF
    We present a theory of the Seebeck effect in nanoscale ferromagnets with dimensions smaller than the spin diffusion length. The spin accumulation generated by a temperature gradient strongly affects the thermopower. We also identify a correction arising from the transverse temperature gradient induced by the anomalous Ettingshausen effect. The effect of an induced spin-heat accu- mulation gradient is considered as well. The importance of these effects for nanoscale ferromagnets is illustrated by ab initio calculations for dilute ferromagnetic alloys.Comment: 5 pages, 2 figure
    corecore